
NASA Ames Research Center, California

Java PathFinder

K. Havelund
Recom Technologies

NASA Ames Research Center
California, USA

NASA Ames Research Center, California

Automated Software Engineering

specification

program

transformation verification

http://ic-www.arc.nasa.gov/ic/projects/amphion

NASA Ames Research Center, California

Current ASE Projects

■ Solar geometry
■ Data Analysis
■ Grid generation
■ Reuse

■ Program verification
(JPF,DEOS)

■ Design verification
(UML,Control Shell)

■ Autonomy Software
(Livingstone,Plans)

Transformation Verification

NASA Ames Research Center, California

The Correctness Problem

■ Trust me
■ Because I designed it
■ It is obviously correct
■ It has not failed in the last N years
■ It has been tested
■ All the demo’s work perfectly

NASA Ames Research Center, California

Traditional Methods

■ Peer review
■ Debugging
■ Random simulation
■ Exhaustive testing
■ Proof?

NASA Ames Research Center, California

Two Sequential Programs

if state == 1 then
 state++

if state == 1 then
 state--

A: B:

state == 1

state++

1

1

2

state == 1

state--

1

1

0

Initial state == 1

NASA Ames Research Center, California

The Concurrency Syndrom

A:state == 1

A:state++

B:state == 1

A:state++

B:state--

B:state--

A:state++

A:state == 1 B:state--B:state == 1

B:state--A:state++

B:state-- A:state++

1

1

2

1

2

1

0 0

1

2

11

0

1

1

NASA Ames Research Center, California

The Concurrency Test problem

■ Not enough to control test inputs
■ Also requires control over scheduler
■ Even worse : scheduler may differ

between platforms

NASA Ames Research Center, California

JPF : Java -> SPIN (Promela)

Java Promela

SPIN
verification
engine

JVM

JPF

NASA Ames Research Center, California

Rest of Talk

■ SPIN
■ JPF
■ Remote Agent Experience (using SPIN)
■ “Release Lock” Problem in JPF

NASA Ames Research Center, California

The SPIN Tool

Promela
program

Property

SPIN

NO + error trace

YES

NASA Ames Research Center, California

Promela

■ Processes
■ Variables
■ Message Channels

Three types of objects

NASA Ames Research Center, California

Example Promela Program

byte state = 1;

proctype A()
{state == 1 -> state++; assert(state==2)}

proctype B()
{state == 1 -> state--; assert(state == 0)}

init{run A();run B()}

NASA Ames Research Center, California

Error Trace - Assertion Violated

 byte state = 1
 run A()
 run B()

 state == 1
state == 1
 state-- (0)
 assert(state == 0)
state++ (1)
assert(state == 2)

NASA Ames Research Center, California

Linear Temporal Logic (LTL)

[]p

<>p

[](p -> <> q)

[](p -> q U r)

...

...

...

...

p pp p p pp p

p

p q p q

p r

q q qqq

Deadlocks will also be detected

NASA Ames Research Center, California

Another Example

proctype user(byte this){
 flag[this] = true;
 turn = this;
 flag[other] == false || turn == other;
 CRITICAL;
 flag[this] = false
}

#define CRITICAL incrit++;incrit--
#define other (1 - this)

int incrit;
bool flag[2];
bool turn;

init{run user(0); run user(1)}
[](incrit == 0 ||
 incrit == 1)

LTL Property:

NASA Ames Research Center, California

SPIN’s Verification Engine

■ Theoretical foundation : Buchi automata
■ Efficient state storage (states are

remembered to avoid redundancy)
■ Partial order reduction to cut down

number of examined execution traces
■ Bitstate hashing as an approximation

when everything else fails

NASA Ames Research Center, California

The Java PathFinder

■ Write your program/design in Java
■ Write specifications using special

methods from the Verify class.
■ Press the button

NASA Ames Research Center, California

The Verify Class

class Verify{
 public static void assert(boolean b){}
}

public void methodA(){
 if (shared.state == 1){
 shared.state++;
 Verify.assert(shared.state == 2);
 };
}

NASA Ames Research Center, California

Threads in Java

class P extends Thread{
 ...
 public void run(){...}
}

P p = new P();
p.start();

NASA Ames Research Center, California

Communication via Monitors

synchronized

synchronized

... wait();...

...notify();...

call

call

M

N

Thread T1

Thread T2

Passive Object (Monitor)

yield()

stop()

NASA Ames Research Center, California

File Transfer
class Transfer extends Thread{
 File from,to;

 public Transfer(File from,File to){
 this.from = from; this.to = to; this.start();
 }

 public void run(){
 synchronized(from){
 synchronized(to){
 from.transfer(to)
 }}
 }
}

NASA Ames Research Center, California

File Transfer (Cont.)

class Main{
 public static void main(String[] args){
 File f1 = new File(...);
 File f2 = new File(...);
 Transfer t1 = new Transfer(f1,f2);
 Transfer t2 = new Transfer(f2,f1);
 }
}

NASA Ames Research Center, California

Error Trace : Deadlock

Transfer(f1,f2) Transfer(f2,f1)

 locks f1
 locks f2
 waits on f2
 waits on f1

NASA Ames Research Center, California

 (Put Get Put Get ...) Pattern

class CubbyHole{
 private boolean available = false;
 public int balance = 0;

 public synchronized void get(){
 if (available == false){
 try{wait();} catch (Exception e){}
 };
 available = false;
 balance--;
 notify();
 }

Producer Consumers

get
put

NASA Ames Research Center, California

(Put Get) *

 public synchronized void put(){
 if (available == true){
 try{wait();} catch (Exception e){}
 };
 available = true;
 balance++;
 notify();
 }
}

NASA Ames Research Center, California

(Put Get)*

class Main{
 public static void main(String[] args){
 CubbyHole c = new CubbyHole();
 Producer prod = new Producer(c);
 Consumer cons1 = new Consumer(c);
 Consumer cons2 = new Consumer(c);
 Verify.assert(c.balance == 0 ||
 c.balance == 1);
 }
}

NASA Ames Research Center, California

Error Trace : Assertion Violated

Producer Consumer 1 Consumer 2

 get() - wait()
 get() - wait()
put() - notify()
 1 0 notify()
 -1

NASA Ames Research Center, California

Repair

class CubbyHole{
 private boolean available = false;
 public int balance = 0;

 public synchronized void get(){

 while (available == false){
 try{wait();} catch (Exception e){}
 };
 available = false;
 balance--;
 notify();
 }

NASA Ames Research Center, California

Mutual Exclusion

class Sem{
 public boolean[] flag = new boolean[2];
 public int turn;
 public int incrit = 0;
}

NASA Ames Research Center, California

Mutual Exclusion (Cont.)

class Process extends Thread{
 private Sem sem;
 private int pid;

 public Process(Sem sem,int pid){
 this.sem = sem;
 this.pid = pid;
 this.start();
 }

 ... continued ...

NASA Ames Research Center, California

Mutual Exclusion (Cont.)

 public void run(){
 while (true){
 sem.flag[pid] = true;
 sem.turn = pid;
 while (!(sem.flag[1-pid] == false || sem.turn == 1-pid)){};
 sem.incrit++;
 Verify.assert(sem.incrit == 1);
 sem.incrit--;
 sem.flag[pid] = false;
 };
 }
}

NASA Ames Research Center, California

Mutual Exclusion (Cont.)

class Main{
 public static void main(String[] args){
 Sem sem = new Sem();
 Process p1 = new Process(sem,0);
 Process p2 = new Process(sem,1);
 }
}

NASA Ames Research Center, California

No Errors

■ Assertion is not violated
■ There are no deadlocks

NASA Ames Research Center, California

More “Natural” Solution ?

 public void run(){
 while (true){ before:
 sem.flag[pid] = true; || sem.turn == 1-pid
 sem.turn = pid;
 while (!(sem.flag[1-pid] == false && sem.turn == pid)){}
 sem.incrit++;
 Verify.assert(sem.incrit == 1);
 sem.incrit--;
 sem.flag[pid] = false;
 };
 }
}

NASA Ames Research Center, California

No Errors, Correct??

■ Assertion is not violated
■ There are no deadlocks
■ Let’s try : [](incrit==0 -> <>incrit==1)

NASA Ames Research Center, California

 “ Natural” Solution (Cont.)

class Main{
 public static void main(String[] args){
 Sem sem = new Sem();
 Process p1 = new Process(sem,0);
 Process p2 = new Process(sem,1);
 Verify.response(sem.incrit == 0,
 sem.incrit == 1);
 }
}

NASA Ames Research Center, California

Error Trace : Livelock

Process 0 Process 1

flag[0] = true
turn = 0
 flag[1] = true
 turn = 1

busy wait until: busy wait until:
 flag[1] == false flag[1] == false flag[0] == false flag[0] == false
 & turn == 0 & turn == 1

NASA Ames Research Center, California

Formal Analysis of
Deep Space 1

K. Havelund, M. Lowry, J. Penix
NASA Ames Research Center

California, USA

NASA Ames Research Center, California

The Remote Agent

ExecutivePlanner

Diagnosis

goal

plan
cmd

obscmd
recovery

NASA Ames Research Center, California

Informal Description of Exec.

2

1

Tasks

Daemon Database

Property locks

a 10 F 1

b on T 2

commands

lock

monitor

update
eventsinterrupt

(a,8)
(b,off)

NASA
DS-1

NASA Ames Research Center, California

Task Execution

inline execute_task(this,p){
 bool err = 0;
 {snarf_property_lock(this,p,err);
 achieve_lock_property(this,p,err);
 closure()
 } unless {err || active_tasks[this].state == ABORTED};

 active_tasks[this].state = TERMINATED;

 {release_lock(this,p)} unless
 {active_tasks[this].state == ABORTED}
}

NASA Ames Research Center, California

Properties Stated by Engineers

Release Property:
A task releases all its locks before it terminates.

Abort Property:
If an inconsistency occurs between the database
and an entry in the lock table, then all tasks that
rely on the lock will be terminated, either by
themselves of by the daemon.

NASA Ames Research Center, California

The Release Property in SPIN

#define not_subscriber(this,pn)
 !locks[pn].sub??[eval(this)]

proctype Achieving_Task(TaskId this){
 ...
 execute_task(this,p);
 assert(not_subscriber(this,p.name))
}

NASA Ames Research Center, California

Error 1 : Lock Releasing

Lock

Main
task

Release

Anticipated interrupt

Unexpected interrupt

= Unwind-protect in LISP

Task

in Task

NASA Ames Research Center, California

Error 1 : the Promela Code

inline execute_task(this,p){
 bool err = 0;
 {snarf_property_lock(this,p,err);
 achieve_lock_property(this,p,err);
 closure()
 } unless {err || active_tasks[this].state == ABORTED};

 active_tasks[this].state = TERMINATED;

 {release_lock(this,p)} unless
 {active_tasks[this].state == ABORTED}
}

in Task

NASA Ames Research Center, California

The Abort Property

#define task1_property_broken
 (locks[0].value == 1 &
 locks[0].achieved &
 db[0] == 0)

#define task1_terminated
 (active_tasks[1].state == TERMINATED ||
 active_tasks[1].state == ABORTED)

[](task1_property_broken -> <>task1_terminated)

NASA Ames Research Center, California

Error 2 : Achieve Procedure

achieve

achieved = T

Property broken

closure

Main
Task

a 10 F 1

T

in Task

NASA Ames Research Center, California

Error 2 Repair : Critical Section

achieve

achieved = T

closure

Main
Task Introduce critical section

in Task

NASA Ames Research Center, California

Error 3 : Check Locks Procedure

Unexpected change
Check
Locks

Check locks :
interrupt

Check locks :
repair remains

- no change discovered
- no interrupts

- change discovered
- automatic recovery
- but NO interrupts

in Daemon

NASA Ames Research Center, California

Error 3 “Repair” : New Property

We did initially not regard this as an error!

Therefore we modified correctness property:

#define task1_property_repaired
 locks[0].value == db[0]

[](task1_property_broken ->
 <> (task1_terminated ||
 task1_property_repaired))

IT WAS THOUGH!

NASA Ames Research Center, California

Error 4 : Waiting Procedure

Check
Locks

wait

Unexpected change

Daemon

repeat

New
Events?

yes no

in Daemon

NASA Ames Research Center, California

Error 4 : the Promela Code

proctype Daemon(TaskId this){
 bit lock_violation;
 do
 :: check_locks(lock_violation);
 “if lock_violation do automatic recovery”;
 if
 :: “event counters changed” -> “repeat”
 :: else -> wait_for_events(this)
 fi
 od
}

in Daemon

NASA Ames Research Center, California

Error 4 Repair: Critical Section

Check
Locks

wait

Unexpected change

Daemon

repeat

New
Events?

yes no

in Daemon

NASA Ames Research Center, California

Error 5 : Extra Lock Check

Check
Locks

wait

Daemon

repeat

New
Events?

yes no

in Daemon

At least one extra check

Not a serious error

NASA Ames Research Center, California

Programmer’s Comment to Err.1

“...
It arises only because you are in a multi-threaded
environment, and only in very obscure
circumstances that are unlikely to arise
during testing.

Congratulations! You have just converted me into a
believer in formal methods.”

NASA Ames Research Center, California

Programmer’s Comment to Err.2

“Ah, good point. You are correct, this is a bug. I’m
impressed! This makes two bugs you guys have
discovered through formal methods that we almost
certainly would never have caught any other way.”

etc.

NASA Ames Research Center, California

Did our Work have any Impact?

“You’ve found a number of bugs that I am fairly
confident would not have been found otherwise.
One of the bugs revealed a major design flaw
(which has not been resolved yet). So I’d say
you have had a substantial impact. If nothing
else you have helped us improve the quality of
our product well beyond what we otherwise
would have produced.”

Programmer

NASA Ames Research Center, California

What are your Conclusions?

“I used to be very skeptical of the utility of
formal methods. This is at least partly due to
the fact that I had a misconception about the way
in which formal methods would be used. I thought
that formal-methods advocates wanted to prove
correctness of software systems. I believed (and
still believe) that this is impossible. However, what
you have been doing is finding places where
software violates design assumptions, which is not
the same thing as proving correctness. To me
you have demonstrated the utility of this approach
beyond any question.”

Programmer

NASA Ames Research Center, California

Conclusion

LISP

Promela

Abstraction

Translation

NASA Ames Research Center, California

The Release Property in JPF
class LockTable{
 Task[] table = new Task[3];

 public synchronized void lock(int prop,Task task)
 throws LockException{
 if (table[prop] != null){
 throw(new LockException);
 };
 table[prop] = task;}

 public synchronized void release(int prop){
 table[prop] = null;}
}

NASA Ames Research Center, California

Release Property (Tasks)

class Task extends Thread{
 LockTable t;
 int p;
 Activity a;

 public Task(LockTable t,int p,Activity a){
 this.t = t; this.p = p; this.a = a;
 this.start();
 }

 ... continued ...

NASA Ames Research Center, California

Release Property (Tasks cont.)

 public void run(){
 try{
 t.lock(p,this);
 a.activity();
 }
 catch (LockException e){}
 finally {release(p);};
 }
}

NASA Ames Research Center, California

Release Property (Daemon)

class Daemon extends Thread{
 Task task;

 public Daemon(Task task){
 this.task = task;
 this.start();
 }

 public void run(){
 task.stop();
 }
}

NASA Ames Research Center, California

Release Property (Main)

class Main{
 public static void main(String[] args){
 LockTable table = new LockTable();
 Activity activity = new Activity();
 Task task = new Task(table,1,activity);
 Daemon daemon = new Daemon(task);
 try {task.join();} catch (InterruptedException e){};
 Verify.assert(table.table[1] == null);
 }
}

NASA Ames Research Center, California

Error Trace : Assertion Violated

■ Task is started
■ Daemon is started
■ Task executes activity

■ Task enters finally construct, ready to
release property

■ Daemon stops the task
■ Task stops and leaves finally construct,

no property is released

NASA Ames Research Center, California

“Hunting” error without SPIN

 public void run(){
 try{
 t.lock(p,this);
 a.activity();
 }
 catch (LockException e){}
 finally {yield();release(p);};
 }
}

But one has to know where to hunt!

The yield() statement
will provoke the error
to occur.

NASA Ames Research Center, California

Chinese Check Program

■ Analyzed by Jens Skakkebaek
(Stanford University)

■ http://www.cchess.net
■ 1400 LOC, 16 classes
■ Deadlock confirmed
■ Shorter error trace found

NASA Ames Research Center, California

Programmer’s Email
“I did my best to verify that no possible deadlock
 can happen, yet there is no way for me to check,
 and I’m likely to have made a mistake somewhere.

 The program sometimes finds itself in deadlock
 position, probably once a week or so. The backup
 server, with virtually no load, surely doesn’t have
 a deadlock problem. I often attribute those deadlock
 problems to a disk access problem, as some times
 the network disk is terribly slow. Sometimes,
it’s the high load of the computer that causes the
problem. Sometimes, I can trace the bug to Java itself.”

NASA Ames Research Center, California

The Deadlock Situation

Consumer Producer

Queue

Lock

Gets FULL!

1

2

3

NASA Ames Research Center, California

Goddard Collaboration : SAFE

■ Supports low-cost spacecraft operation
via the internet

■ Provides a file transfer service between
satellites and ground stations

■ Works without operator to handle the
unique space-ground communication
challenges: mobility (satellites move)
and intermittence (short contact frame)

Simple Automatic File Exchange

NASA Ames Research Center, California

SAFE System Components

mobile nodes

gateway nodes

fixed nodes

NASA Ames Research Center, California

The Future

■ JPF1 : a prototype (proof of concept)
■ JPF2 : next version within one year
■ Supports unit verification directly
■ Abstraction workbench for handling

system verification (large programs)
■ We are looking for applications to verify

